Using machine learning algorithms to guide rehabilitation planning for home care clients
نویسندگان
چکیده
BACKGROUND Targeting older clients for rehabilitation is a clinical challenge and a research priority. We investigate the potential of machine learning algorithms - Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) - to guide rehabilitation planning for home care clients. METHODS This study is a secondary analysis of data on 24,724 longer-term clients from eight home care programs in Ontario. Data were collected with the RAI-HC assessment system, in which the Activities of Daily Living Clinical Assessment Protocol (ADLCAP) is used to identify clients with rehabilitation potential. For study purposes, a client is defined as having rehabilitation potential if there was: i) improvement in ADL functioning, or ii) discharge home. SVM and KNN results are compared with those obtained using the ADLCAP. For comparison, the machine learning algorithms use the same functional and health status indicators as the ADLCAP. RESULTS The KNN and SVM algorithms achieved similar substantially improved performance over the ADLCAP, although false positive and false negative rates were still fairly high (FP > .18, FN > .34 versus FP > .29, FN. > .58 for ADLCAP). Results are used to suggest potential revisions to the ADLCAP. CONCLUSION Machine learning algorithms achieved superior predictions than the current protocol. Machine learning results are less readily interpretable, but can also be used to guide development of improved clinical protocols.
منابع مشابه
Opinion versus practice regarding the use of rehabilitation services in home care: an investigation using machine learning algorithms
BACKGROUND Resources for home care rehabilitation are limited, and many home care clients who could benefit do not receive rehabilitation therapy. The interRAI Contact Assessment (CA) is a new screening instrument comprised of a subset of interRAI Home Care (HC) items, designed to be used as a preliminary assessment to identify which potential home care clients should be referred for a full ass...
متن کاملThe K-nearest neighbor algorithm predicted rehabilitation potential better than current Clinical Assessment Protocol.
OBJECTIVE There may be great potential for using computer-modeling techniques and machine-learning algorithms in clinical decision making, if these can be shown to produce results superior to clinical protocols currently in use. We aim to explore the potential to use an automatic, data-driven, machine-learning algorithm in clinical decision making. STUDY DESIGN AND SETTING Using a database co...
متن کاملUsing Machine Learning to Plan Rehabilitation for Home Care Clients: Beyond "Black-Box" Predictions
متن کامل
Elderly Daily Activity-Based Mood Quality Estimation Using Decision-Making Methods and Smart Facilities (Smart Home, Smart Wristband, and Smartphone)
Due to the growth of the aging phenomenon, the use of intelligent systems technology to monitor daily activities, which leads to a reduction in the costs for health care of the elderly, has received much attention. Considering that each person's daily activities are related to his/her moods, thus, the relationship can be modeled using intelligent decision-making algorithms such as machine learn...
متن کاملHome care after hip fracture in a health planning region.
Health-care restructuring has increased the focus on integrating health care. Therefore the study purpose was to quantify patient movement from hospital to home care before restructuring occurred in a health planning district. Hospital discharge abstracts and home care records identified patients with a hip fracture who used home care (n = 353). Patients from acute care were more likely than re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Medical Informatics and Decision Making
دوره 7 شماره
صفحات -
تاریخ انتشار 2007